Tutorial 13: Cube Mapping

Summary

In real life, shiny objects reflect incoming light - think of a mirror, or the reflection of the setting sun
on a pool of water. The lighting model introduced last tutorial can’t simulate such reflections, and to
do so would require expensive ray racing operations. Instead, games use an environment map - a set
of static images that represent the surrounding scenery that can be sampled from to emulate 'real’
reflections. This tutorial will demonstrate how to use these environment maps to achieve two things
- reflections, and sky boxes.

New Concepts

Cube maps, Cube samplers, environment mapping, reflecting a direction vector, sky boxes

Environment Maps

Environment maps have long been used to add computationally inexpensive reflections to graphical
scenes. It is now common in games to see water puddles and other wet surfaces reflect the sky, and
for shiny materials like metal and glass to reflect light from the environment around them.

An example of environment map reflections on a car windscreen in Deus Fx: Human Revolution

Cube Maps

Modern games generally use cube maps, which contain enough visual data to create reflections for any
given surface angle. As the name suggests, cube maps are made up of 6 separate images, which when
formed into a cube, form a fully enclosed scene. Imagine taking a photograph of your surroundings
at 90 degree intervals, including the ceiling and floor - if you stuck those photographs together, you’d
create a cube containing a seamless image of everything you could see. It might look something like
this:

An example cube map

Generally these cube map images are an artist created static scene of mountains or other such far away
features; although it’s possible to render a dynamic cube map, this is prohibitively computationally
expensive, as the scene would have to be processed once for each cube side.

Sampling Cube Maps

Just like any other texture, in order to use a cube map, it must be sampled. However, instead
of sampling a cube map with a 2D texture coordinate, as with usual 2D textures, cube maps are
sampled with a specialised texture sampler using a normalised direction vector - just like the vertex
normals you’ve been using. Imagine the direction vector as being a ray that begins in the middle of
the cube formed by the cube mapped textures, with the point where the ray intersects the cube being
the texel sampled. So for example, a direction vector of (0, 1, 0) will sample from the middle of the
positive y axis cube map texture, which in the example cube map above would be the sky. The cube
map sampler will automatically handle which texture will be sampled from a given direction vector,
and in modern rendering APIs sampling can also occur between the cube map textures. Imagine a 45°
reflection vector - the 'ray’ of this vector would intersect exactly at the corner between two cubemap
textures, so to sample a correct texel, bilinear interpolation between the two textures takes place.

0.1.0

-X

S 2

0.0.-1 1.0.0

Left: Sampling direction vectors Right: An example of a vector resulting in cross-texture interpolation

Reflections

So, we now know that cube maps are sampled using direction vectors - but which direction vectors?
We can’t use vertex normals, as they would sample the same point on the cube map regardless of
where the viewer was - Imagine a mirror that reflected only from its normal, it’d be a static scene,
no matter where you viewed it from. So, to sample a cube map correctly we need a reflection vector.
Using a reflection vector takes into account how light bounces off a surface from the perspective of the
viewer. To calculate the reflection vector for a surface, we need its normal, and the incident vector
that runs from the view point to the surface - just like the calculations for specularity. Only instead
of using them to calculate the Blinn-Phong half-angle, we’re going to use them to calculate the angle
of reflection from the angle of incidence like so:

R=T-2N(N-I)

Where R is the reflected vector, I is the incident, N is the normal, and N-I is their dot product.
This will calculate an angle identical to the angle of incidence, but pointing away from the surface
being reflected.

Normal

Vector
&

Ineident
Vector

Reflection
Vector

An example reflection vector calculated from a normal and an incident, showing that 0y = 0g

As the angle of reflection is view-dependent, using it to sample the cube map will result in accurate
reflections that can be used in dynamic scenes.

Skyboxes

Another popular use for cube maps is that of sky boxes. Instead of having a solid background colour,
it has long been popular to have an image in the background that moves with the viewpoint, providing
a more immersive experience. Even early 3D shooters like id Software’s Doom had a simple form of
viewer-oriented background sky:

Simple parallaz sky texture in Doom II: Hell On Earth

As cube map textures contain the visual data for an all-encompassing view, they can be used to
create a realistic background to a game world. Sometimes, this is created by literally enclosing a game
level inside a giant cube, with the separate cube map textures applied as normal 2D textures on the

cubes faces, but it’s possible to use the specialised cube map sampler to project the skybox onto the
scene, gaining the advantages cube mapping brings, such as the seamless cross-texture interpolation
mentioned earlier.

Skyboxing with cube maps is usually performed, oddly enough, using a single quad. A quad is
drawn to fill the screen, similar to a post-processing stage, but often as the first thing renderer into a
scene. Then, instead of applying the cube map textures as standard 2D textures to the quad, sampled
via texture coordinates, the direction vectors formed by normalising the vertex positions are used,
instead. These vertex direction vectors are then interpolated to provide the correct direction vector
for each fragment.

(0.1.-1)
B
(-1.1,-1) (1,1,-1) (0.1-1y , (0,0.707,-0.707)

A (0,0,-1)

(0,0,0)

(-1,-1,-1) (1,-1,-1) (0,-1,-1)* (0.-0.707,-0.707)

Left: Head on view of the vertexr positions between the camera and the full screen quad. Right: Side
view showing interpolated direction vectors formed from normalised vertex positions (shown in italics)

For the skybox to rotate with the viewpoint moves, the direction vectors obtained should be rotated
by the camera matrix - the inverse of the view matrix used in vertex shaders. For example, consider
a normalised direction vector pointing at (0,0,-1). This would sample directly from the centre of the
negative z cube map texture - if our camera has an identity matrix for it’s view, this’ll be correct.
Now, consider if our camera looks straight up. As we’re drawing a full screen quad, the direction
vector would still be (0,0,-1). If we rotate it by the camera’s inverted transform, the direction vector
will end up at (0,1,0), sampling the positive y cubemap.

10 0 0 0 0
00 -1 0 0] |1
01 0 o] |-1] |0
00 0 1 0 0

By rendering the cube using a skybox cube map shader at the start of a frame, the virtual worlds you
create for your games will have the appearance of having mountainous regions or huge skyscrapers,
all without having to render massive amounts of polygons.

N | .

Panoramic view of a skybox rendered using cube maps

© 00 ~NO O WN -

W WWWNDNNNMNDNNNMNNNMNNMNRE,EEPRERRPRrPERERRPRERPRRPR R BRPR P
W NP, O OWWONO”OODPdWNEFE O OWOOWNO O P WNDE~O

Example Program

To demonstrate how to perform cube mapping, we're going to create an example program based off
last tutorial’s lit heightmap scene - only this time around, we’ll have a skybox instead of a dull grey
background, and the heightmap will have some simple water, that correctly reflects the skybox. As
we’ve not used the texture matrix in a while, to finish the scene we’ll make the water move using texture
matrix manipulation. To do all this, we’ll need three shaders in total - the per fragment lighting shader
we created last tutorial, and two new ones; one each to handle the skybox and water reflections. So, in
your Shaders solution folder, you should create 3 new text files - skyboz Vertex. glsl, skyboxFragment.glsl,
and reflectFragment.glsl, as well as a new Renderer class that inherits from OGLRenderer, and a main
file, tutoriall2.cpp. Our main file is just the same as the previous few tutorials, so we won’t go over
it again.

Renderer header file

Our example program overrides the RenderScene and UpdateScene public virtual functions, as
with the other tutorials in this series. It also has 3 new protected functions, pointers to 3 Shader
instances, as well as a HeightMap, a Mesh, a Light, and a Camera. Finally, we have an OpenGL
texture name for our cube map, and a float member variable to control our water movement.

#pragma once
#include "./nclgl/0GLRenderer.h"
#include "./nclgl/Camera.h"
#include "./nclgl/HeightMap.h"
class Renderer : public 0OGLRenderer {
public:
Renderer (Window &parent);
virtual ~“Renderer (void) ;
virtual void RenderScene();
virtual void UpdateScene(float msec);
protected:
void DrawHeightmap () ;
void DrawWater () ;
void DrawSkybox () ;
Shader * lightShader;
Shader * reflectShader;
Shader * skyboxShader ;
HeightMap* heightMap;
Mesh * quad ;
Light* light ;
Camerax* camera;
GLuint cubeMap;
float waterRotate;
3

renderer.h

Renderer Class file

We start our Renderer class constructor by initialising the Camera, HeightMap, Light, and Mesh class
instances. We then initialise our three Shaders, and link them, returning if the linking process fails.
Nothing new so far - the camera position and light constructor values are just as they were in the

O 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

last tutorial.

#include "Renderer.h"
Renderer::Renderer (Window &parent) : OGLRenderer (parent) {
camera = new Camera();
heightMap = new HeightMap (TEXTUREDIR"/terrain.raw");
quad = Mesh::GenerateQuad () ;
camera->SetPosition(Vector3 (RAW_WIDTH*HEIGHTMAP_X / 2.0f,
500.0f ,RAW_WIDTH*HEIGHTMAP_X));

light = new Light(Vector3 ((RAW_HEIGHT*HEIGHTMAP_X / 2.0f) ,500.0f,

(RAW_HEIGHT*HEIGHTMAP_Z / 2.0f)),

Vector4(0.9f,0.9f,1.0f,1),
(RAW_WIDTH*HEIGHTMAP_X) / 2.0f);
reflectShader = new Shader (SHADERDIR"PerPixelVertex.glsl",
SHADERDIR "reflectFragment.glsl");
skyboxShader = new Shader (SHADERDIR"skyboxVertex.glsl",

SHADERDIR "skyboxFragment.glsl");
lightShader = new Shader (SHADERDIR"PerPixelVertex.glsl",

SHADERDIR"PerPixelFragment.glsl");
if (!reflectShader ->LinkProgram() || !lightShader ->LinkProgram ()
! skyboxShader ->LinkProgram ()) {
return;
}

renderer.cpp

Next up, we apply the water.tga texture to the quad, and the rock texture and bump maps to the
heightMap. On line 37 is the first real new piece of code - the initialisation of the cube map. We're
going to use a handy function of the SOIL library to generate our cubemap, which takes 6 filenames,
corresponding to the positive and negative z, y, and z axis textures required to form the full cube -
the order is important! See how even though we have 6 cube map textures, only one OpenGL texture
name is required. We then check that all of the textures have been correctly generated, and if so,

27
28
29
30
31
32
33
34
35
36

enable repeating on the water and rock textures.

quad->SetTexture (SOIL_load_0GL_texture (TEXTUREDIR"water.TGA",
SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, SOIL_FLAG_MIPMAPS));

heightMap->SetTexture (SOIL_load_OGL_texture (
TEXTUREDIR"Barren Reds.JPG", SOIL_LOAD_AUTO,
SOIL_CREATE_NEW_ID, SOIL_FLAG_MIPMAPS));

heightMap ->SetBumpMap (SOIL_load_OGL_texture (
TEXTUREDIR"Barren RedsDOT3.JPG", SOIL_LOAD_AUTO,
SOIL_CREATE_NEW_ID, SOIL_FLAG_MIPMAPS));

renderer.cpp

37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72

cubeMap = SO0IL_load_0OGL_cubemap (
TEXTUREDIR"rusted_west. jpg", TEXTUREDIR"rusted_east. jpg",
TEXTUREDIR"rusted_up. jpg", TEXTUREDIR"rusted_down. jpg",

TEXTUREDIR"rusted_south. jpg", TEXTUREDIR"rusted_north. jpg",
SOIL_LOAD_RGB,

SOIL_CREATE_NEW_ID, O

)

if (! cubeMap || !quad->GetTexture() || !'heightMap->GetTexture() ||
lheightMap ->GetBumpMap ()) |
return;

}

SetTextureRepeating (quad->GetTexture (), true);
SetTextureRepeating (heightMap->GetTexture (), true);
SetTextureRepeating (heightMap ->GetBumpMap () , true) ;

renderer.cpp

Finally in this constructor, we initialise the waterRotate float, enable depth testing, and set up
a perspective projection matrix. We also enable alpha blending, as we want the water to be slightly
transparent. We also use glEnable with a new OpenGL symbolic constant -
GL_TEXTURE_CUBE_MAP_SEAMLESS. This enables bilinear filtering to be applied across
the edges of the 6 cube map textures, so we get a seamless skybox. If you tried to do this tutorial
without bilinear filtering, you’d get pixellated skies, and if you used bilinear without the seamless ex-
tension enabled, you’d probably see lines at the corners of the individual cube map textures, breaking
the illusion.

init = true;
waterRotate = 0.0f;
projMatrix = Matrix4::Perspective(1.0f,15000.0f,

(float)width / (float)height, 45.0f);

glEnable (GL_DEPTH_TEST) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable (GL_TEXTURE_CUBE_MAP_SEAMLESS);

renderer.cpp

As ever, in the destructor we delete everything we created in the constructor - and make
currentShader equal 0 to prevent double deletion problems with the destructor of OGLRenderer.

Renderer:: " Renderer (void) {
delete camera;
delete heightMap;
delete quad;
delete reflectShader;
delete skyboxShader;
delete lightShader;
delete light;
currentShader = 0;

renderer.cpp

73
74
75
76
7

78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96

97
98
99

Our UpdateScene function has something new in it this time - we want our water texture to
slowly rotate and give the impression of flowing water, so on line 80 we increase the waterRotate
member variable that we’re going to use to control this by a small amount, governed by the frame
time. Other than that, it’s just the usual - update our camera, and generate a new view matrix from it.

void Renderer::UpdateScene(float msec) {
camera->UpdateCamera (msec) ;
viewMatrix = camera->BuildViewMatrix () ;
waterRotate += msec / 1000.0f;

}

renderer.cpp

Our scene rendering is split up again, this time into DrawSkyboz, DrawHeightmap, and Draw Wa-
ter, so all RenderScene does is clear the screen, call these functions, and swap the buffers.The order is
important - the water transparency effect won’t work if DrawWater is called first, as the heightmap
colour data won’t be there to blend with, and DrawSkybozr must be before the others, as otherwise
our skybox would be drawn over the top of the heightmap and water!

void Renderer::RenderScene () {
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

DrawSkybox () ;
DrawHeightmap () ;

DrawWater () ;

SwapBuffers () ;

renderer.cpp

Our first rendering sub-function is DrawSkybox. This will draw a full-screen quad similar to the
one used in the post-processing tutorial, which we will use to project our cube map as a background
skybox. First off, the function is bookended by calls to disable and enable writes to the depth buffer -
we don’t want the quad to fill the depth buffer, and cause our heightmap and water to be discarded.
Next, we enable our skybox shader, and update the shader matrices. we don’t actually use the model
matrix in the vertex shader, so there’s no need to change it. After that, we simply draw our quad,
and unbind the skybox shader.

void Renderer::DrawSkybox() {
glDepthMask (GL_FALSE);
SetCurrentShader (skyboxShader) ;

UpdateShaderMatrices () ;
quad->Draw () ;

glUseProgram (0) ;
glDepthMask (GL_TRUE) ;

renderer.cpp

Next up is DrawHeightmap. Everything in this function should all be familiar to you from last tu-
torial. We enable the per fragment lighting shader, set the shader light and shader uniform variables,
before finally drawing the height map. Easy!

void Renderer::DrawHeightmap() {
SetCurrentShader (lightShader);
SetShaderLight (*1ight) ;

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

glUniform3fv(glGetUniformLocation (currentShader ->GetProgram(),
"cameraPos") ,1,(float*)&camera->GetPosition());

glUniformli(glGetUniformLocation (currentShader ->GetProgram(),
"diffuseTex"), 0);

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"bumpTex"), 1);

modelMatrix.ToIdentity ();
textureMatrix.ToIdentity ();

UpdateShaderMatrices () ;
heightMap->Draw () ;

glUseProgram (0) ;

renderer.cpp

The last rendering sub-function is Draw Water. It’s pretty similar to DrawHeightmap, but note that
we use the shader reflectShader, and instead of binding texture unit 1 to a uniform called bump Tex,
we are binding texture unit 2 to a uniform called cubeTez. The water in our scene is simply going
to be a single quad, which needs to be translated to the middle of the heightmap, scaled out across
the heightmap, and rotated so that it intersects the heightmap horizontally instead of vertically. The
heightX and heightZ local variables hold x and y axis positions of the centre of the heightmap, while
heightY is the water level - you can modify this to your liking. We also set the texture matrix in
this function, to make the texture coordinates repeat, and be rotated about the z-axis by the value
waterRotate.

void Renderer::DrawWater () {
SetCurrentShader (reflectShader) ;
SetShaderLight (*1ight);
glUniform3fv (glGetUniformLocation (currentShader ->GetProgram(),
"cameraPos") ,1,(float*)&camera->GetPosition());

glUniformli (glGetUniformLocation (currentShader ->GetProgram(),
"diffuseTex"), 0);

glUniformli(glGetUniformLocation (currentShader ->GetProgram(),
"cubeTex"), 2);

glActiveTexture (GL_TEXTURE2) ;
glBindTexture (GL_TEXTURE_CUBE_MAP, cubeMap);

float heightX

(RAW_WIDTH*HEIGHTMAP_X / 2.0f);

float heightY 266 * HEIGHTMAP_Y / 3.0f;

float heightZ

(RAW_HEIGHT*HEIGHTMAP_Z / 2.0f);

modelMatrix =
Matrix4::Translation(Vector3 (heightX, heightY, heightZ)) =
Matrix4::Scale(Vector3(heightX,1, heightZ)) =*
Matrix4::Rotation (90, Vector3(1.0f,0.0f,0.0f));

textureMatrix = Matrix4::Scale(Vector3(10.0f,10.0f,10.0f)) =x*
Matrix4::Rotation(waterRotate ,Vector3(0.0f,0.0f,1.0f));

146
147
148
149
150
151

© 00 ~NO O WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

UpdateShaderMatrices () ;
quad->Draw () ;

glUseProgram (0) ;

renderer.cpp

Mesh Class

In this tutorial, and the next tutorial, we're going to be using the GenerateQuad function, to create
geometry to perform lighting calculations on. That means our quad must have normals and tangents,
just like the HeightMap, and anything else we draw. Fortunately, we can do this easily, and we don’t
even have to use the GenerateNormals and GenerateTangents functions! The quad’s normal simply
points down negative z, and its tangent points along positive x, so we can explicitly set these values,
in the same way we set the colour per vertex. So, our GenerateQuad function now looks like this:

Mesh* Mesh::GenerateQuad () {
Mesh* m = new Mesh();
m->numVertices = 4;
m->type = GL_TRIANGLE_STRIP;
m->vertices = new Vector3[m->numVertices];
m->textureCoords = new Vector2[m->numVertices];
m->colours = new Vector4[m->numVertices];
m->normals = new Vector3[m->numVerticesl];
m->tangents = new Vector3[m->numVertices];
m->vertices [0] = Vector3(-1.0f, -1.0f, 0.0f);
m->vertices[1] = Vector3(-1.0f, 1.0f, 0.0f);
m->vertices[2] = Vector3(1.0f, -1.0f, 0.0f);
m->vertices [3] = Vector3(1.0f, 1.0f, 0.0f);
m->textureCoords [0] = Vector2(0.0f, 1.0f);
m->textureCoords [1] = Vector2(0.0f, 0.0f);
m->textureCoords [2] = Vector2(1.0f, 1.0f);
m->textureCoords [3] = Vector2(1.0f, 0.0f);
for(int i = 0; i < 4; ++i) {
m->colours[i] = Vector4(1.0f, 1.0f,1.0f,1.0f);
m->normals[i] = Vector3(0.0f, 0.0f,-1.0f);
m->tangents [i] = Vector3(1.0f, 0.0f,0.0£f);
}
m->BufferData () ;
return m;
}

Mesh.cpp

10

O 00 ~NO O WN =

e T e e e
0O N O WN - O

19
20
21
22
23
24
25
26
27
28

Cubemap Reflection Shader

The first new shader we are going to write in this tutorial will use our new cube map to create
reflections on the water in the scene. We can reuse the per-fragment lighting vertex shader, but we’ll
need a new fragment shader, so the following program will go in the reflectFragment.glsl file.

Fragment Shader

We start off in familiar fashion to the per-fragment lighting fragment shader, with two texture sam-
plers, uniform variables for the lighting and camera, and the Vertex interface block. Note, however,
that the cubeTex sampler is of a new type - samplerCube. This new sampler type allows us to sample
our cubemap using a direction vector, and will automatically handle which of the 6 separate textures
the resulting sample will be taken from.

#version 150 core

uniform sampler2D diffuseTex;
uniform samplerCube cubeTex;

uniform vec4d lightColour;
uniform vec3 lightPos;
uniform vec3 cameraPos;
uniform float 1lightRadius;

in Vertex {
vec4d colour;
vec2 texCoord;
vec3 normal;
vec3 worldPos;
} IN;

out vec4 fragColour;

reflectFragment.glsl

We then calculate the diffuse colour, incident vector, light distance, and light attenuation, just
like we do in the per-fragment lighting fragment shader. On line 25, though, we have some new code.
We sample the cubeTex sampler with a direction vector, which we calculate using the glsl reflect
function, which as its name implies, calculates the angle of reflection that was introduced earlier. On
line 28 we combine the attenuated light colour and the sampled cubemap reflection colour. That’s
everything! The samplerCube variable and reflect function do most of the hard work - all we have to
do is decide how to blend in the result.

void main(void) {
vec4d diffuse = texture (diffuseTex, IN.texCoord) * IN.colour;
vec3 incident = normalize (IN.worldPos - cameraPos);
float dist = length(lightPos - IN.worldPos);
float atten = 1.0 - clamp(dist / lightRadius, 0.2, 1.0);
vecd reflection = texture (cubeTex,
reflect (incident ,normalize (IN.normal)));
fragColour = (lightColour*diffuse*atten)*(diffuse+reflection);
}

reflectFragment.glsl

11

© 00 ~NO O d WN -

L e T o T T = R =TSR SN
©O© 0 ~NO O WN -~ O

Cubemap Skybox Shader

To create our skybox on screen, we're going to sample from a samplerCube again. This time however,
we’ll be generating the direction vector ourselves. Earlier, in the DrawSkybox function, we rendered
a full-screen quad. To draw the quad we’ve cheated a bit - in this shader we’re actually not going to
use the model and view matrices to translate the quad anywhere or draw it in relation to the camera.
This means it’ll be drawn with its origin at the clip space origin, so we move it back 1 unit, so the
quad is drawn right up against our near plane, covering the screen entirely! We will use the projection
matrix though - so changes in the field of vision will be reflected in the shape of the skybox cube, by
stretching the sides of the quad out beyond the sides of the screen.

We are going to use the viewMatrix elsewhere, to rotate a direction vector, which will then be inter-
polated like any other vertex data passed to the fragment shader, so there will be a unique direction
vector for each fragment. As we don’t rotate the quad’s vertices, the normalised direction vector
generated from the vertex positions for the 'middle’ of the screen will always be (0,0,-1), so we rotate
it by the view matrix to point in the direction our camera is looking.

Vertex Shader

We want the direction vector used for cubemap sampling to rotate with the camera view so that the
correct cubemap texel is sampled, so on line 17, we rotate the direction vector by multiplying it by the
view matrix...sort of. We don’t want to apply the translation component to the rotation, as this would
warp our direction vector as the camera moved away from the origin, so we downcast the view matrix
to a mat3 - remember, the translation component is in the fourth column of the view matrix. We also
actually use the transpose of the view matrix. Why is this? As we’re rotating an object rather than
the camera, we need the inverse of the view matrix to rotate the world objects correctly - remember
how we ’inverted’ the camera matrix by negating all of the camera class variables in the Build View-
Matriz function? We're going to use another trick to avoid the inverse operation here, too. If the
view matrix has no scaling or shearing, then the inverse of a square matrix is equal to its transpose
- a much quicker operation to perform! Try it - both inverse and transpose will return the same results.

Finally, we must also take into consideration the aspect ratio of the screen, and the desired field
of vision - the sky should distort and zoom in/out consistently with the rest of the world. To do so,
we must therefore use the projection matrix. We can scale the x and y axes of the normal vector by
getting the reciprocal of the associated diagonal values of the projection matrix - for these values, the
reciprocal is the same as what the inverse of the projection matrix would provide.

#version 150 core
uniform mat4 viewMatrix;
uniform mat4 projMatrix;
in vec3 position;
out Vertex {
vec3 normal;
} 0UT;
void main(void) {
vec3 multiply = vec3(0,0,0);
multiply.x = 1.0f / projMatrix [0][0];
multiply.y = 1.0f / projMatrix[1][1];
vec3 tempPos = (position * multiply) - vec3(0,0,1);
0OUT .normal = transpose (mat3(viewMatrix)) * normalize (tempPos);
gl_Position = vec4 (position, 1.0);
}

skyboxVertex.glsl

12

© 00 ~NO O WN -

e el
ISV S N @]

Fragment Shader

The fragment shader is really easy - the output colour is simply the result of sampling the cubeTex
sampler using the interpolated direction vector we kept in the normal variable. We normalise it to
unit length to account for minor errors that can occur with interpolation.

#version 150 core
uniform samplerCube cubeTex;
uniform vec3 cameraPos;
in Vertex {
vec3 normal;
} IN;
out vec4 fragColour;
void main(void) {
fragColour = texture(cubeTex ,normalize (IN.normal)) ;
}

skyboxFragment.glsl

Tutorial Summary

If everything works properly, you should see the now-familiar heightmap , with per-fragment lighting.
However, you should now have rocky mountains in the distance, courtesy of the cube map and the
skybox shader. Try looking around with the mouse - you should be able to see mountains all around,
and be able to look straight up and see clouds. What’s more, you should see water has filled your
terrain - a closer inspection should show that the cubemap is also reflected correctly in the water. If
you look straight down into the slowly moving water, you should see the clouds reflected back at you.
Not bad for being a cube and a quad with a shader applied to it! Another pretty simple effect, but you
should now know a little bit about environment mapping using cube maps, and how to sample cube
maps using direction vectors. In the next tutorial we're going to add something else to our graphical
scenes - shadows!

Further Work

1) Last tutorial you were introduced to bump maps. The water texture used in this tutorial has a
bump map in the Textures folder, called waterDOTS3.tga. How would you modify the cubemap reflec-
tion shader to make use of this bump map?

2) By using the quad mesh and modifying the skybox shader, you should be able to add a per-
fectly reflecting mirror in your scene. Or, perhaps it’s a portal to somewhere else? The quad doesn’t
necessarily have to use the same cubemap as the skybox...

3) In the example program, the heightmap is drawn on top of the skybox. That can result in quite
a lot of overdraw, where pixels are drawn multiple times in a frame. Can you think of any way of
reducing this overdraw? Investigate how the stencil buffer introduced in tutorial 5 could be used to

do this.

4) Take a look at http://brainwagon.org/2002/12/05/fun-with-environment-maps/

13

©O© 00 ~NO O WN -

W WWNDNNDNNNDMNDNDNNNDMNE PR P2 2 2R
N, O OWOWO~NOOO P WNE O OO NO”OGPd WwWND - O

Appendix A: Generating Cube Maps the hard way

In tutorial 3, you saw how to create OpenGL textures from texture data, using the OpenGL func-
tion glTexImage2D. Turns out, generating cube maps uses the same function - remember, each of
the individual textures is still 2D, even if we can sample the end result using a 3D direction vector.
The main change over 2D textures is the first parameter of the glTexImage2D function. Instead
of using GL_.TEXTURE_2D, one of 6 symbolic constants is used - one for each axis direction. In
the semi-pseudocode below, the array axis on line 7 contains the required symbolic constants. The
only other change is to glBindTexture and glTexParameteri - like with glTexImage2D, instead of
using the symbolic constant GL_TEXTURE_2D, GL_.TEXTURE_CUBE_MAP is used instead.
Not much to it, really!

string names[6] = {
"west.tga" , "east.TGA" s
"up.TGA" , "down.TGA" ,
"south.TGA" , "north.TGA"
};

GLuint axis[6] = {
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
};

GLuint skyBoxCubeMap;

glGenTextures (1, &skyBoxCubeMap);
glBindTexture (GL_TEXTURE_CUBE_MAP, skyBoxCubeMap);
for(int i = 0; i < 6; ++i) {

Texture*t = <Texture data from filename names[i]>

glTexImage2D (axis[i], t->mipmaplevel, t->internalFormat,
t->width, t->height , t->border,
t->format, t->datatype, t->data);

glTexParameteri (GL_TEXTURE_CUBE_MAP ,

GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri (GL_TEXTURE_CUBE_MAP ,

GL_TEXTURE_MAG_FILTER ,GL_NEAREST);
glTexParameteri (GL_TEXTURE_CUBE_MAP ,GL_TEXTURE_WRAP_S ,GL_CLAMP) ;
glTexParameteri (GL_TEXTURE_CUBE_MAP ,GL_TEXTURE_WRAP_T ,GL_CLAMP) ;

b

glBindTexture (GL_TEXTURE_CUBE_MAP, 0);

OpenGL Cube Map Loading

14

